Let's make a haiku	Markov Chain	Transition matrix	Generating a Haiku	Writing like Wilde

Data Science of Text Generation 2. Markov Chains

Ernst C. Wit, Martina Boschi

wite@usi.ch, martina.boschi@usi.ch Università della Svizzera italiana

Bachelor in Data Science

https://www.usi.ch/en/education/bachelor/data-science

Let's make a haiku ●○	Markov Chain	Transition matrix	Generating a Haiku	Writing like Wilde						
Let's make a	haiku togeth	Let's make a haiku together								

Task 1. Make a haiku by each choosing one word after hearing what previous person has chosen.

You can select from following 9 words:

- 4 nouns: prof, kid, maths, sky
- 2 verbs: is, flies
- 3 others: down, weird, cool

NOTE: Haiku should have 17 words (or syllables)

Let's make a haiku ○●	Markov Chain	Transition matrix	Generating a Haiku	Writing like Wilde
Independence	e?			

 $P(W_1 \cap \ldots \cap W_{11}) \neq P(W_1) \cdots P(W_{11})$

 $P(W_1 \cap \ldots \cap W_{11}) \neq P(W_1) \cdots P(W_{11})$

Instead, word 2 depends on 1st, word 3 on 1st and 2nd, etc:

 $P(W_1 \cap \ldots \cap W_{11}) = P(W_1)P(W_2|W_1) \cdots P(W_{11}|W_1 \cap \ldots \cap W_{10})$

 $P(W_1 \cap \ldots \cap W_{11}) \neq P(W_1) \cdots P(W_{11})$

Instead, word 2 depends on 1st, word 3 on 1st and 2nd, etc:

 $P(W_1 \cap \ldots \cap W_{11}) = P(W_1)P(W_2|W_1) \cdots P(W_{11}|W_1 \cap \ldots \cap W_{10})$

Very difficult to learn all these probabilities! Can we simplify?

 $P(W_1 \cap \ldots \cap W_{11}) \neq P(W_1) \cdots P(W_{11})$

Instead, word 2 depends on 1st, word 3 on 1st and 2nd, etc:

 $P(W_1 \cap \ldots \cap W_{11}) = P(W_1)P(W_2|W_1) \cdots P(W_{11}|W_1 \cap \ldots \cap W_{10})$

Very difficult to learn all these probabilities! Can we simplify? Perhaps words just **depend on last word**:

 $P(W_1 \cap \ldots \cap W_{11}) = P(W_1)P(W_2|W_1)P(W_3|W_2) \cdots P(W_{11}|W_{10})$

Let's make a haiku	Markov Chain ●○	Transition matrix	Generating a Haiku	Writing like Wilde

Markov Chains

Markov Chain

stochastic process in (discrete) time

 $W_0, W_1, W_2, \ldots, W_t, W_{t+1}, \ldots$

that always only looks at last state, e.g.

W_t

to decide where to go next, i.e.,

 W_{t+1}

- Future W_{t+1} depends only on present W_t .
 - Past states $(W_0, W_1, \ldots, W_{t-1})$ have no added influence.

In simple terms, system "forgets" its history at each step; only present matters for predicting future.

Let's make a haiku oo	Markov Chain	Transition matrix ●○○○○○	Generating a Haiku	Writing like Wilde

Let's define:

Transition Probabilities

 $W_t = t$ -th word of the haiku.

which takes as value one of 28 possible words.

Transition matrix

For a Markov chain $\{W_t\}$ with 28 possible words,

• the 28 × 28 matrix P, where

$$P_{ij} = P(W_{t+1} = j | W_t = i)$$

is called the probability transition matrix.

Let's make a haiku	Markov Chain	Transition matrix ○●○○○○	Generating a Haiku	Writing like Wilde	
Example					

Figure: Markov Chain with 3 states and 4 transition probabilities.

For above Markov Chain, transition matrix is given as:

Let's make a haiku	Markov Chain	Transition matrix ○●○○○○	Generating a Haiku	Writing like Wilde	
Example					

Figure: Markov Chain with 3 states and 4 transition probabilities.

For above Markov Chain, transition matrix is given as:

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 1 & 0 \end{bmatrix}$$

NOTE: rows of transition matrix must sum to 1.

Let's make a haiku	Markov Chain	Transition matrix ○○●○○○	Generating a Haiku	Writing like Wilde

Training the Haiku Markov Chain

Data Science uses available data to train model.

We *estimate* or *train* P_{Haiku} from data:

 $\hat{P}_{ij} = \frac{\text{\# instances of word } i \text{ followed by word } j}{\text{\# instances of word } i \text{ follow by any other 8 words}}$

By scanning through ... the internet.

We find 1,530 instances.

U

Let's make a haiku	Markov Chain	Transition matrix ○○○●○○	Generating a Haiku	Writing like Wilde

We saw: $|\text{prof} \rightarrow \text{kid}| = 1,530 = 1.5\text{K}$

Now, we do the same thing for all 7 other words:

prof	kid	maths	sky	is	flies	down	weird	cool
count	1.5							

Let's make a haiku	Markov Chain	Transition matrix ○○○●○○	Generating a Haiku	Writing like Wilde

We saw: $|\text{prof} \rightarrow \text{kid}| = 1,530 = 1.5\text{K}$

Now, we do the same thing for all 7 other words:

prof	kid	maths	sky	is	flies	down	weird	cool
count	1.5	170						

Let's make a haiku	Markov Chain	Transition matrix ○○○●○○	Generating a Haiku	Writing like Wilde

We saw: $|\text{prof} \rightarrow \text{kid}| = 1,530 = 1.5\text{K}$

Now, we do the same thing for all 7 other words:

prof	kid	maths	sky	is	flies	down	weird	cool
count	1.5	170	5.4	5.5	0.3	3.4	0.9	17.4

Total count = 204,400 documents

 $\textit{P}_{\text{prof}
ightarrow ext{kid}} =$

Let's make a haiku	Markov Chain	Transition matrix	Generating a Haiku	Writing like Wilde

We saw: $|prof \rightarrow kid| = 1,530 = 1.5K$

Now, we do the same thing for all 7 other words:

prof	kid	maths	sky	is	flies	down	weird	cool
count	1.5	170	5.4	5.5	0.3	3.4	0.9	17.4

Total count = 204,400 documents

$$P_{\text{prof} \to \text{kid}} = \frac{1.5}{204.4} = 0.007$$

prof	kid	maths	sky	is	flies	down	weird	cool
P_{ij}	0.01							

Let's make a haiku	Markov Chain	Transition matrix	Generating a Haiku	Writing like Wilde

We saw: $|\text{prof} \rightarrow \text{kid}| = 1,530 = 1.5\text{K}$

Now, we do the same thing for all 7 other words:

prof	kid	maths	sky	is	flies	down	weird	cool
count	1.5	170	5.4	5.5	0.3	3.4	0.9	17.4

Total count = 204,400 documents

$$P_{\mathsf{prof} \to \mathsf{kid}} = \frac{1.5}{204.4} = 0.007$$

prof	kid	maths	sky	is	flies	down	weird	cool
Pij	0.01	0.83	0.03	0.03	0.00	0.02	0.00	0.09

Now we can do the same thing for other $? \rightarrow ?$ transitions.

Let's make a haiku oo	Markov Chain	Transition matrix ○○○○●○	Generating a Haiku	Writing like Wilde
Count Moteix				

	-				 -	-				=			
	-	0		10	- n	л	0	٠	84	н			
		. 1			- 11	л	2		Π.		- 3	c –	
٦	9	\smile	-		 		U	•			Æ	•	

	Γ0	2	170	5	6	0	3	1	ך 17
	2	0	6	98	22	306	192	14	145
	117	37	0	4	12	0	7	1	6
	10	162	4	0	116	27	157	44	400
C =	2	34	1	10	0	1	258	3880	1090
	1	2	2	36	15	0	666	3	8
	23	123	12	260	492	155	0	181	170
	1280	713	6	22	85	4	44	0	115
	24	2740	96	221	115	14	60600	655	0]

By dividing each row by its row sum, we get transition matrix.

(ㅁ) 세례 (신문) 세문) - 문

Let's make a haiku	Markov Chain	Transition matrix 00000●	Generating a Haiku	Writing like Wilde

Transition Matrix

	00.07	0.01	0.83	0.03	0.03	0.00	0.02	0.00	ן0.09
	0.00	0.00	0.01	0.13	0.03	0.39	0.24	0.02	0.18
	0.64	0.20	0.00	0.02	0.06	0.00	0.04	0.01	0.03
	0.01	0.18	0.00	0.00	0.13	0.03	0.17	0.05	0.43
> =	0.00	0.01	0.00	0.00	0.00	0.00	0.05	0.74	0.21
	0.00	0.00	0.00	0.05	0.02	0.00	0.91	0.00	0.01
	0.02	0.09	0.01	0.18	0.35	0.11	0.00	0.13	0.12
	0.56	0.31	0.00	0.01	0.04	0.00	0.02	0.00	0.05
	0.00	0.04	0.00	0.00	0.00	0.00	0.94	0.01	0.00

Let's make a haiku	Markov Chain	Transition matrix	Generating a Haiku ●○○	Writing like Wilde
Generating T	ext using Ma	arkov Chains:		

To generate text, we repeat the following steps:

Set t = 1

- Start with a seed word w₁ (our choice!).
- Use Markov chain to sample next word based on seed.

 $w_{t+1} = w$ with probability $p_{w_t \to w}$

④ Set t ← t + 1 and return to step 3 to generate a sentence (until t=17).

Let's make a haiku	Markov Chain	Transition matrix	Generating a Haiku ○●○	Writing like Wilde

Let's start with

$$W_1 = sky$$

Let's make a haiku	Markov Chain	Transition matrix	Generating a Haiku ○●○	Writing like Wilde

Let's start with

$$W_1 = sky$$

Then transition probabilities are:

sky	prof	kid	maths	is	flies	down	weird	cool
P_{ij}	0.01	0.18	0.00	0.13	0.03	0.17	0.05	0.43

Let's make a haiku	Markov Chain	Transition matrix	Generating a Haiku ○●○	Writing like Wilde

Let's start with

$$W_1 = sky$$

Then transition probabilities are:

sky	prof	kid	maths	is	flies	down	weird	cool
P_{ij}	0.01	0.18	0.00	0.13	0.03	0.17	0.05	0.43

We randomly select with probability 0.43:

 $W_2 = \operatorname{cool}$

Let's make a haiku	Markov Chain	Transition matrix	Generating a Haiku ○●○	Writing like Wilde

Let's start with

$$W_1 = sky$$

Then transition probabilities are:

sky	prof	kid	maths	is	flies	down	weird	cool
P_{ij}	0.01	0.18	0.00	0.13	0.03	0.17	0.05	0.43

We randomly select with probability 0.43:

$$W_2 = \operatorname{cool}$$

Then transition probabilities are:

cool	prof	kid	maths	sky	is	flies	down	weird
P_{ij}	0.00	0.04	0.00	0.00	0.00	0.00	0.94	0.01

We randomly select:

Let's make a haiku	Markov Chain	Transition matrix	Generating a Haiku ○●○	Writing like Wilde

Let's start with

$$W_1 = sky$$

Then transition probabilities are:

sky	prof	kid	maths	is	flies	down	weird	cool
P_{ij}	0.01	0.18	0.00	0.13	0.03	0.17	0.05	0.43

We randomly select with probability 0.43:

$$W_2 = \operatorname{cool}$$

Then transition probabilities are:

cool	prof	kid	maths	sky	is	flies	down	weird
P_{ij}	0.00	0.04	0.00	0.00	0.00	0.00	0.94	0.01

We randomly select:

$$W_3 = \text{down}$$

with probability 0.94

Let's make a haiku	Markov Chain	Transition matrix	Generating a Haiku ○○●	Writing like Wilde
Full haiku				

sky cool down weird cool down kid seems weird kid flies down seems weird prof maths prof

Let's make a haiku	Markov Chain	Transition matrix	Generating a Haiku	Writing like Wilde ●○○

If we want to write in style of Oscar Wilde?

If we want to write like Oscar Wilde,...

... then what transition matrix should we use?

- Each author has their own transition matrix P.
- Matrix *P* is large (15,000 × 15,000)

We estimate or train P_{Wilde} from data:

 $\hat{p}_{ij} = \frac{\text{\# instances of word } i \text{ followed by word } j}{\text{\# instances of word } i}$

by scanning through books of Oscar Wilde.

Let's make a haiku oo	Markov Chain	Transition matrix	Generating a Haiku	Writing like Wilde ○●○
Next steps				

We can extend method to get better results:

- 1 Take more history (condition on more than 1 word)
- ② Tokenize words
- Ontextualize previously observed words

Leap in complexity and capability of ChatGPT is significant...

Let's make a haiku oo	Markov Chain	Transition matrix	Generating a Haiku	Writing like Wilde ○●○
Next steps				

We can extend method to get better results:

- Itake more history (condition on more than 1 word)
- ② Tokenize words
- Ontextualize previously observed words

Leap in complexity and capability of ChatGPT is significant...

...but built on idea of sampling random next word in a sequence.

Let's make a haiku	Markov Chain	Transition matrix	Generating a Haiku	Writing like Wilde ○○●
Summary				

- Words in sentence depend on context
- ② Markov Chains
 - take into account context (more realistic)
 - but in a limited way (computationally efficient)
- Iransition matrix P describes Markov Chain:
 - Rows add up to 1
 - *p_{ij}* = probability of going from word *i* to word *j*
- ④ P can be learned from data.

