Data Science of Text Generation 1. Taking your chances

Ernst C. Wit and Martina Boschi

<wite@usi.ch>, <martina.boschi@usi.ch> Università della Svizzera italiana

Bachelor in Data Science

<https://www.usi.ch/en/education/bachelor/data-science>

Normally, probability starts with an urn of coloured balls.

We start with a poem:

Do you carrot all for me? My heart beets for you, With your turnip nose And your radish face, You are a peach. If we cantaloupe, Lettuce marry: Weed make a swell pear.

consisting of 28 different words.

Task 1. Pick one random word from poem and write down.

Have you magically chosen the same word?

Question:

How likely is it that at least two of you selected same word?

Choose from:

10%, 40%, 80%, 95%?

The 28 words in poem consist of:

- **9 food items**: carrot, beets, turnip, radish, peach, cantaloupe, lettuce, weed, pear.
- **3 body parts:** heart, nose, face
- **4 verbs:** do, are, marry, make \bullet
- **5 pronouns:** you, me, my, your, we \bullet
- **7 others:** all, for, with, and, a, if, swell

Task 2. What is the probability that you chose a food item?

The 28 words in poem consist of:

- **9 food items**: carrot, beets, turnip, radish, peach, cantaloupe, lettuce, weed, pear.
- **3 body parts:** heart, nose, face
- **4 verbs:** do, are, marry, make \bullet
- **5 pronouns:** you, me, my, your, we \bullet
- **7 others:** all, for, with, and, a, if, swell

Task 2. What is the probability that you chose a food item?

$$
P(\text{choose food item}) = \frac{9}{28} = 0.32
$$

[Random words](#page-1-0) [Probability rules](#page-5-0) [Conditional probabilities](#page-46-0) [Bayes' Theorem](#page-56-0) [Conclusion](#page-74-0)

Probability rules!

[Random words](#page-1-0) [Probability rules](#page-5-0) [Conditional probabilities](#page-46-0) [Bayes' Theorem](#page-56-0) [Conclusion](#page-74-0)

Definition of probability according to Marquis de Laplace (1779)

Pierre Simon Laplace

Probability of event is ratio of number of cases favorable, to number of all cases possible; when nothing leads us to expect that any one of these cases should occur more than any other, which renders them, for us, equally possible.

[Random words](#page-1-0) [Probability rules](#page-5-0) [Conditional probabilities](#page-46-0) [Bayes' Theorem](#page-56-0) [Conclusion](#page-74-0)

Definition of probability according to Marquis de Laplace (1779)

Pierre Simon Laplace

Probability of event is ratio of number of cases favorable, to number of all cases possible; when nothing leads us to expect that any one of these cases should occur more than any other, which renders them, for us, equally possible.

In **mathematical terms**:

 $P(E) = \frac{\text{Number of elements in } E}{\text{Total number of elements}}$

where *E* is an **event**.

Consider a process with an uncertain outcome:

- amount of rain in Lugano tomorrow,
- roll of a die,
- Word chosen from funny poem.

Collection of all possible outcomes is the **Sample Space**.

Consider a process with an uncertain outcome:

- amount of rain in Lugano tomorrow,
- roll of a die,
- Word chosen from funny poem.

Collection of all possible outcomes is the **Sample Space**.

$$
S_{\text{rain}} = \{x \mid x \geq 0\},\
$$

$$
S_{\text{die}}=
$$

Consider a process with an uncertain outcome:

- amount of rain in Lugano tomorrow,
- roll of a die.
- Word chosen from funny poem.

Collection of all possible outcomes is the **Sample Space**.

$$
S_{\text{rain}} = \{x \mid x \geq 0\},\
$$

$$
S_{\text{die}} = \{1,2,3,4,5,6\}
$$

 $S_{\text{poem}} = \{\text{do}, \text{you}, \text{carrot}, \text{all}, \dots, \text{swell}, \text{pear}\}\$

An **event** is a subset of the sample space.

 $E =$ word is a verb

is an event w.r.t. *S*poem, since

 $E = \{do, are, many, make\} \subset S_{\text{poem}}.$

The set

 $F =$ word is funny

is *not* an event w.r.t. S_{poem} , because $F \not\subset S_{\text{poem}}$.

Consider selecting word from poem and following two events:

- $A =$ food item
- $B =$ contains letter "w",

then we can combine the events as follows:

 $A \cap B$ =

Consider selecting word from poem and following two events:

- $A =$ food item
- $B =$ contains letter "w",

$$
A \cap B = \{\text{weed}\}
$$

$$
A \cup B =
$$

Consider selecting word from poem and following two events:

- $A =$ food item
- $B =$ contains letter "w",

$$
A \cap B
$$
 = {weed}
\n $A \cup B$ = {carrot, ..., pear, we, with, swell}
\n Ac =

Consider selecting word from poem and following two events:

- $A =$ food item
- $B =$ contains letter "w",

$$
A \cap B = \{ \text{weed} \}
$$

\n
$$
A \cup B = \{ \text{carrot}, \dots, \text{pear}, \text{we, with, swell} \}
$$

\n
$$
A^{c} = \{ \text{heart}, \text{nose}, \dots, \text{if, swell} \}
$$

\n
$$
B^{c} =
$$

Consider selecting word from poem and following two events:

- $A =$ food item
- $B =$ contains letter "w",

$$
A \cap B = \{ \text{weed} \}
$$

\n
$$
A \cup B = \{ \text{carrot}, \dots, \text{pear}, \text{we, with, swell} \}
$$

\n
$$
A^c = \{ \text{heart}, \text{nose}, \dots, \text{if, swell} \}
$$

\n
$$
B^c = \text{Spoem} - \{ \text{weed, we, with, swell} \}
$$

\n
$$
A^c \cup B^c =
$$

Consider selecting word from poem and following two events:

- $A =$ food item
- $B =$ contains letter "w",

$$
A \cap B = \{\text{weed}\}
$$

\n
$$
A \cup B = \{\text{carrot}, \dots, \text{pear}, \text{we, with, swell}\}
$$

\n
$$
A^c = \{\text{heart}, \text{nose}, \dots, \text{if, swell}\}
$$

\n
$$
B^c = \text{Spoem} - \{\text{weed}, \text{we, with, swell}\}
$$

\n
$$
A^c \cup B^c = \text{Spoem} - \{\text{weed}\}
$$

\n
$$
(A^c \cup B^c)^c =
$$

Consider selecting word from poem and following two events:

- $A =$ food item
- $B =$ contains letter "w",

then we can combine the events as follows:

$$
A \cap B = \{\text{weed}\}
$$

\n
$$
A \cup B = \{\text{carrot}, \dots, \text{pear}, \text{we, with, swell}\}
$$

\n
$$
A^c = \{\text{heart}, \text{nose}, \dots, \text{if, swell}\}
$$

\n
$$
B^c = \text{Spoem} - \{\text{weed}, \text{we, with, swell}\}
$$

\n
$$
A^c \cup B^c = \text{Spoem} - \{\text{weed}\}
$$

\n
$$
(A^c \cup B^c)^c = \{\text{weed}\}
$$

A **general rule** helpful in calculating probabilities:

$$
(A \cap B) = (A^c \cup B^c)^c
$$

Probability that event does *not* happen:

$$
P(E^c)=1-P(E).
$$

For example, let $E =$ word is **not** food item, then

$$
P(E) = 1 - P(E^c)
$$

=

$$
\mathbf{G}
$$

Probability that event does *not* happen:

$$
P(E^c)=1-P(E).
$$

For example, let $E =$ word is **not** food item, then

=

$$
P(E) = 1 - P(Ec)
$$

= 1 - P({word is food item})

Probability that event does *not* happen:

```
P(E^c) = 1 - P(E).
```
For example, let $E =$ word is **not** food item, then

$$
P(E) = 1 - P(E^{c})
$$

= 1 - P({word is food item})
= 1 - 9/28
= 19/28

Here, gains of "switching to complement" are not very high.

Complements are often good strategy when confronted with

- "at most x" questions, where x is high,
- "at least y" questions, where y is low.

The interaction operator is typically described as "and": *A* ∩ *B means "both A, and B".*

Example: Poem. Probability of selecting food item with a "w"?

$$
A = {food item}
$$

$$
B = {contains a "w"}
$$

 $P(A \cap B) =$

The interaction operator is typically described as "and": *A* ∩ *B means "both A, and B".*

Example: Poem. Probability of selecting food item with a "w"?

$$
A = {food item}
$$

$$
B = {contains a "w"}
$$

 $P(A \cap B) = P(\text{weed})$

=

The interaction operator is typically described as "and": *A* ∩ *B means "both A, and B".*

Example: Poem. Probability of selecting food item with a "w"?

$$
A = {food item}
$$

$$
B = {contains a "w"}
$$

$$
P(A \cap B) = P(\text{weed})
$$

= $\frac{1}{28}$

Union operator is non-exclusive "or":

- *A* ∪ *B means "or A, or B, or both".*
- This corresponds to area contained in *both circles*:

For example, consider again:

$$
A = {food item}
$$

$$
B = {contains a "w"}
$$

so

$$
P(A \cup B) = P(A) + P(B) - P(A \cap B)
$$

=

For example, consider again:

$$
A = {food item}
$$

$$
B = {contains a "w"}
$$

so

$$
P(A \cup B) = P(A) + P(B) - P(A \cap B)
$$

= 9/28 + 4/28 - 1/28

=

For example, consider again:

$$
A = {food item}
$$

$$
B = {contains a "w"}
$$

so

$$
P(A \cup B) = P(A) + P(B) - P(A \cap B)
$$

= 9/28 + 4/28 - 1/28
= 12/28

Consider words **you and your neighbour** selected from poem.

What is **sample space**?

*S*poem2 =

Consider words **you and your neighbour** selected from poem. What is **sample space**?

 $S_{\text{poem2}} = \{(\text{carrot}, \text{carrot}), \dots (\text{carrot}, \text{pear}), \dots, (\text{pear}, \text{pear})\}$ =

Consider words **you and your neighbour** selected from poem. What is **sample space**?

 $S_{\text{poem2}} = \{(\text{carrot}, \text{carrot}), \dots (\text{carrot}, \text{pear}), \dots, (\text{pear}, \text{pear})\}$

 $=$ {28 × 28 word combinations}

Let's consider the event

$$
E = \{ \text{both of you choose food items} \}
$$

Note,

 $|E| =$

Consider words **you and your neighbour** selected from poem. What is **sample space**?

 $S_{\text{poem2}} = \{(\text{carrot}, \text{carrot}), \dots (\text{carrot}, \text{pear}), \dots, (\text{pear}, \text{pear})\}$

 $=$ {28 × 28 word combinations}

Let's consider the event

$$
E = \{both\ of\ you\ choose\ food\ items\}
$$

Note,

$$
|E|=9\times 9.
$$

If you didn't cheat, then

$$
P(E) =
$$

Consider words **you and your neighbour** selected from poem. What is **sample space**?

 $S_{\text{poem2}} = \{(\text{carrot}, \text{carrot}), \dots (\text{carrot}, \text{pear}), \dots, (\text{pear}, \text{pear})\}$ $=$ {28 × 28 word combinations}

Let's consider the event

$$
E = \{ \text{both of you choose food items} \}
$$

Note,

$$
|E|=9\times 9.
$$

If you didn't cheat, then

$$
P(E)=\frac{9\times 9}{28\times 28}=.10
$$

There is something special about previous example:

Your word does not affect your neighbour's word So, events

- $A = \{$ your word is food item $\}$
- $B = \{$ vour neighbour's word is food item $\}$

are so-called **independent events**.

In case of independent events, we can use

$$
P(A \cap B) = P(A)P(B)
$$

Example. 2 words from poem

$$
P(A \cap B) =
$$

There is something special about previous example:

Your word does not affect your neighbour's word So, events

- $A = \{$ your word is food item $\}$
- $B = \{$ vour neighbour's word is food item $\}$

are so-called **independent events**.

In case of independent events, we can use

$$
P(A \cap B) = P(A)P(B)
$$

Example. 2 words from poem

$$
P(A \cap B) = P(A)P(B)
$$

=

There is something special about previous example:

Your word does not affect your neighbour's word So, events

- $A = \{$ your word is food item $\}$
- $B = \{$ vour neighbour's word is food item

are so-called **independent events**.

In case of independent events, we can use

$$
P(A \cap B) = P(A)P(B)
$$

Example. 2 words from poem

$$
P(A \cap B) = P(A)P(B) = \frac{9}{28} \times \frac{9}{28} = 0.10
$$

Have you magically chosen the same word?

Question:

How likely is it that at least two of you selected same word?

Choose from:

10%, 40%, 80%, 95%?

 $E =$ at least two words match

- $E =$ at least two words match
- E^c = no words match

- $E =$ at least two words match
- E^c = no words match
- A_{ij} = words of person *i* and *j* do not match
- Note that we can write E^c in terms of A_{ij} :

- \bullet $E =$ at least two words match
- E^c = no words match
- \bullet A_{ij} = words of person *i* and *j* do not match
- Note that we can write E^c in terms of A_{ij} :

$$
E^c=\cap_{i,j}A_{ij}.
$$

Then, assuming independence among the *Aij*:

$$
P(E) =
$$

Let's begin by defining relevant events:

- \bullet $E =$ at least two words match
- E^c = no words match
- \bullet A_{ij} = words of person *i* and *j* do not match
- Note that we can write E^c in terms of A_{ij} :

$$
E^c=\cap_{i,j}A_{ij}.
$$

Then, assuming independence among the *Aij*:

$$
P(E) = 1 - P(E^2)
$$

Let's begin by defining relevant events:

- \bullet $E =$ at least two words match
- E^c = no words match
- A_{ij} = words of person *i* and *j* do not match
- Note that we can write E^c in terms of A_{ij} :

$$
E^c=\cap_{i,j}A_{ij}.
$$

Then, assuming independence among the *Aij*:

$$
P(E) = 1 - P(E2)
$$

= 1 - P(\cap_{i,j}A_{ij})

Let's begin by defining relevant events:

- \bullet $E =$ at least two words match
- E^c = no words match
- A_{ij} = words of person *i* and *j* do not match
- Note that we can write E^c in terms of A_{ij} :

$$
E^c=\cap_{i,j}A_{ij}.
$$

Then, assuming independence among the *Aij*:

$$
P(E) = 1 - P(E2)
$$

= 1 - P(\cap_{i,j}A_{ij})
= 1 - \prod_{i,j} P(A_{ij})

Let's begin by defining relevant events:

- \bullet $E =$ at least two words match
- E^c = no words match
- A_{ij} = words of person *i* and *j* do not match
- Note that we can write E^c in terms of A_{ij} :

$$
E^c=\cap_{i,j}A_{ij}.
$$

Then, assuming independence among the *Aij*:

$$
P(E) = 1 - P(E2)
$$

= 1 - P(\cap_{i,j} A_{ij})
= 1 - \prod_{i,j} P(A_{ij})
= 1 - \left(1 - \frac{1}{28}\right)^{\binom{13}{2}} = 0.94

[Random words](#page-1-0) [Probability rules](#page-5-0) [Conditional probabilities](#page-46-0) [Bayes' Theorem](#page-56-0) [Conclusion](#page-74-0)

Conditional Probabilities

Independence is great, because

- we can focus on smaller sample space
- which makes calculations easier

However, often events are **not independent**.

Example: Poem. Probability of selecting food item with a "w"?

$$
A = {food item}
$$

$$
B = {contains a "w"}
$$

$$
0.04 = \frac{1}{28} = P(A \cap B) \neq P(A)P(B) = \frac{9}{28}\frac{4}{28} = 0.05
$$

How can we do simple calculations with dependent events?

Definition of conditional probability

Example. Draw 2 cards from deck without replacement.

- $E = 1$ st card is ace
- $F = 2$ nd card is ace

$P(E \cap F) =$

Definition of conditional probability

Example. Draw 2 cards from deck without replacement.

- $E = 1$ st card is ace
- $F = 2$ nd card is ace

$$
\begin{array}{rcl} P(E \cap F) & = & \frac{4}{52} \frac{3}{51} \\ & = & \end{array}
$$

Definition of conditional probability

Example. Draw 2 cards from deck without replacement.

- $E = 1$ st card is ace
- $F = 2$ nd card is ace

$$
P(E \cap F) = \frac{4}{52} \frac{3}{51}
$$

=
$$
P(E)P(F|E)
$$

where $P(F|E)$ is the probability of F given E .

Definition. Conditional probability of *A* **if** *B* **happened:** $P(A | B) = \frac{P(A \cap B)}{P(B)}.$

Using conditional probabilities

Example: Poem. Probability of selecting food item with a "w"?

$$
A = \{ \text{food item} \}
$$

$$
B = \{contains a "w"\}
$$

$$
P(A \cap B) =
$$

Using conditional probabilities

Example: Poem. Probability of selecting food item with a "w"?

$$
A = \{ \text{food item} \}
$$

$$
B = \{contains a "w"\}
$$

$$
P(A \cap B) = P(A)P(B|A)
$$

Example: Poem. Probability of selecting food item with a "w"?

$$
A = \{ \text{food item} \}
$$

$$
B = \{contains a "w"\}
$$

$$
P(A \cap B) = P(A)P(B|A)
$$

=
$$
\frac{9}{28} \frac{1}{9}
$$

Example: Poem. Probability of selecting food item with a "w"?

$$
A = \{ \text{food item} \}
$$

$$
B = \{contains a "w"\}
$$

$$
P(A \cap B) = P(A)P(B|A)
$$

= $\frac{9}{28} \frac{1}{9}$
= $\frac{1}{28}$

Multiplication rule

For three events *A*, *B*, *C* (not necessarily independent),

$$
P(A \cap B \cap C) = P(A) \times P(B | A) \times P(C | A \cap B)
$$

Example. Consider taking a 3 cards from a pack of cards. What is the probability that they are all aces?

$$
A_i = \text{Acc in } i\text{th draw}
$$

$$
P(A_1 \cap A_2 \cap A_3) =
$$

Multiplication rule

For three events *A*, *B*, *C* (not necessarily independent),

$$
P(A \cap B \cap C) = P(A) \times P(B | A) \times P(C | A \cap B)
$$

Example. Consider taking a 3 cards from a pack of cards. What is the probability that they are all aces?

$$
A_i = \text{Acc in } i\text{th draw}
$$

So we want to know,

$$
P(A_1 \cap A_2 \cap A_3) = P(A_1) \times P(A_2 | A_1) \times P(A_3 | A_1 \cap A_2)
$$

Multiplication rule

For three events *A*, *B*, *C* (not necessarily independent),

$$
P(A \cap B \cap C) = P(A) \times P(B | A) \times P(C | A \cap B)
$$

Example. Consider taking a 3 cards from a pack of cards. What is the probability that they are all aces?

$$
A_i = \text{Acc in } i\text{th draw}
$$

$$
P(A_1 \cap A_2 \cap A_3) = P(A_1) \times P(A_2 | A_1) \times P(A_3 | A_1 \cap A_2)
$$

= $\frac{4}{52} \times$

Multiplication rule

For three events *A*, *B*, *C* (not necessarily independent),

$$
P(A \cap B \cap C) = P(A) \times P(B | A) \times P(C | A \cap B)
$$

Example. Consider taking a 3 cards from a pack of cards. What is the probability that they are all aces?

$$
A_i = \text{Acc in } i\text{th draw}
$$

$$
P(A_1 \cap A_2 \cap A_3) = P(A_1) \times P(A_2 | A_1) \times P(A_3 | A_1 \cap A_2)
$$

= $\frac{4}{52} \times \frac{3}{51} \times$

Multiplication rule

For three events *A*, *B*, *C* (not necessarily independent),

$$
P(A \cap B \cap C) = P(A) \times P(B | A) \times P(C | A \cap B)
$$

Example. Consider taking a 3 cards from a pack of cards. What is the probability that they are all aces?

$$
A_i = \text{Acc in } i\text{th draw}
$$

$$
P(A_1 \cap A_2 \cap A_3) = P(A_1) \times P(A_2 | A_1) \times P(A_3 | A_1 \cap A_2)
$$

= $\frac{4}{52} \times \frac{3}{51} \times \frac{2}{50}$

Multiplication rule

For three events *A*, *B*, *C* (not necessarily independent),

$$
P(A \cap B \cap C) = P(A) \times P(B | A) \times P(C | A \cap B)
$$

Example. Consider taking a 3 cards from a pack of cards. What is the probability that they are all aces?

$$
A_i = \text{Acc in } i\text{th draw}
$$

$$
P(A_1 \cap A_2 \cap A_3) = P(A_1) \times P(A_2 | A_1) \times P(A_3 | A_1 \cap A_2)
$$

= $\frac{4}{52} \times \frac{3}{51} \times \frac{2}{50}$
= 0.00018

[Random words](#page-1-0) [Probability rules](#page-5-0) [Conditional probabilities](#page-46-0) [Bayes' Theorem](#page-56-0) [Conclusion](#page-74-0)

Bayes' Theorem

[Random words](#page-1-0) [Probability rules](#page-5-0) [Conditional probabilities](#page-46-0) [Bayes' Theorem](#page-56-0) [Conclusion](#page-74-0)

Who was Reverend Bayes?

Reverend Thomas Bayes (c.1702 - 17 April 1761)

- **•** English mathematician and Presbyterian minister
- 1743: Elected Fellow of Royal Society.
- 1761: Thomas Bayes dies
- 1763: *Essay Towards Solving a Problem in the Doctrine of Chances* read before Royal Society of London
- 20th century: famous for solving problem of "inverse probability"

Assume we get data *D* from the true state S_0 of reality:

$$
D = {data}
$$

$$
S = {state of the world.}
$$

Question. Given data *D* what is our belief in $S \in \{S_0, S_1, \ldots, S_n\}$?

Note that typically *P*(*D* | *Si*) is easy.

Bayes' Theorem

$$
P(S | D) = \frac{P(D | S)P(S)}{\sum_{i=0}^{n} P(D | S_i)P(S_i)}
$$

Probabilities *P*(*Si*) need to be assumed known *a priori*.

Imagine that at beginning of time, God flips a fair coin:

- **If heads**, then God creates two universes: one with black-haired people, other with blond haired people.
- **If tails**, then God creates one black-haired universe.

Now suppose that you are living in black-haired universe.

Then what is probability of God's coin having landed heads?

- $E = \{$ Living in a black-haired universe.}
- $F = {Heads}$

 $P(F|E) =$

- $E = \{$ Living in a black-haired universe.}
- $F = \{Heads\}$

$$
P(F|E) = \frac{P(FE)}{P(E)}
$$

$$
\begin{array}{c}\n\hline\n\end{array}
$$

- $E = \{$ **Living in a black-haired universe.**}
- $F = \{Heads\}$

$$
P(F|E) = \frac{P(FE)}{P(E)}
$$

=
$$
\frac{P(E|F)P(F)}{P(E|F)P(F)}
$$

- $E = \{$ Living in a black-haired universe.}
- $F = \{Heads\}$

=

$$
P(F|E) = \frac{P(FE)}{P(E)}
$$

=
$$
\frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^c)P(F^c)}
$$

- $E = \{$ Living in a black-haired universe.}
- $F = \{Heads\}$

$$
P(F|E) = \frac{P(FE)}{P(E)}
$$

=
$$
\frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|Fe)P(F^c)}
$$

=
$$
\frac{0.5 \times 0.5}{0.5 \times 0.5 +}
$$

- $E = \{$ Living in a black-haired universe.}
- $F = \{Heads\}$

$$
P(F|E) = \frac{P(FE)}{P(E)}
$$

=
$$
\frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^c)P(F^c)}
$$

=
$$
\frac{0.5 \times 0.5}{0.5 \times 0.5 + 1 \times 0.5}
$$

= 1/3

Sentiment analysis

We get a piece of text (e.g. tweet) and we want to know:

Does it express a positive or negative sentiment?

• Let's consider following dictionary:

 $C = \{$ of, great, kind, weird, stuff, mean $\}$

- Two two sentiments: *S* ∈ {positive, negative}
- Conditional probabilities *P*(*word* | *sentiment*) are:

Define our events:

- $W_i = i$ th word ($i = 1, 2, 3, 4$)
- *N* = negative sentiment

Define our events:

- $W_i = i$ th word ($i = 1, 2, 3, 4$)
- \bullet *N* = negative sentiment

$$
P(N \mid W_1 \cap \ldots \cap W_4) = \frac{P(W_1 \cap \ldots \cap W_4 \mid N)P(N)}{P(W_1 \cap \ldots \cap W_4 \mid N)P(N) + P(W_1 \cap \ldots \cap W_4 \mid N^c)P(N^c)}
$$

=

Define our events:

- $W_i = i$ th word ($i = 1, 2, 3, 4$)
- \bullet *N* = negative sentiment

$$
P(N \mid W_1 \cap \ldots \cap W_4) = \frac{P(W_1 \cap \ldots \cap W_4 \mid N)P(N)}{P(W_1 \cap \ldots \cap W_4 \mid N)P(N) + P(W_1 \cap \ldots \cap W_4 \mid N^c)P(N^c)}
$$

= 0.3×

Define our events:

- $W_i = i$ th word ($i = 1, 2, 3, 4$)
- \bullet *N* = negative sentiment

$$
P(N \mid W_1 \cap ... \cap W_4) = \frac{P(W_1 \cap ... \cap W_4 \mid N)P(N)}{P(W_1 \cap ... \cap W_4 \mid N)P(N) + P(W_1 \cap ... \cap W_4 \mid N^c)P(N^c)}
$$

=
$$
{}^{0.3 \times 0.1 \times 0.1 \times 0.2 \times}
$$

Define our events:

•
$$
W_i = i
$$
th word $(i = 1, 2, 3, 4)$

• *N* = negative sentiment

$$
P(N \mid W_1 \cap ... \cap W_4) = \frac{P(W_1 \cap ... \cap W_4 \mid N)P(N)}{P(W_1 \cap ... \cap W_4 \mid N)P(N) + P(W_1 \cap ... \cap W_4 \mid N^c)P(N^c)}
$$

=
$$
\frac{0.3 \times 0.1 \times 0.1 \times 0.2 \times 0.5}{0.3 \times 0.1 \times 0.1 \times 0.2 \times 0.5 + 0.1 \times 0.3 \times 0.1 \times 0.1 \times 0.5}
$$

=

Define our events:

•
$$
W_i = i
$$
th word $(i = 1, 2, 3, 4)$

• *N* = negative sentiment

$$
P(N \mid W_1 \cap ... \cap W_4) = \frac{P(W_1 \cap ... \cap W_4 \mid N)P(N)}{P(W_1 \cap ... \cap W_4 \mid N)P(N) + P(W_1 \cap ... \cap W_4 \mid N^c)P(N^c)}
$$

=
$$
\frac{0.3 \times 0.1 \times 0.1 \times 0.2 \times 0.5}{0.3 \times 0.1 \times 0.2 \times 0.5 + 0.1 \times 0.3 \times 0.1 \times 0.1 \times 0.5}
$$

= 0.67

Define our events:

•
$$
W_i = i
$$
th word $(i = 1, 2, 3, 4)$

 \bullet *N* = negative sentiment

Bayes' Theorem! Let prior probability $P(N) = 0.5$:

$$
P(N \mid W_1 \cap ... \cap W_4) = \frac{P(W_1 \cap ... \cap W_4 \mid N)P(N)}{P(W_1 \cap ... \cap W_4 \mid N)P(N) + P(W_1 \cap ... \cap W_4 \mid N^c)P(N^c)}
$$

=
$$
\frac{0.3 \times 0.1 \times 0.1 \times 0.2 \times 0.5}{0.3 \times 0.1 \times 0.1 \times 0.2 \times 0.5 + 0.1 \times 0.3 \times 0.1 \times 0.1 \times 0.5}
$$

= 0.67

We have *secretly* made use of conditional independence! We relax this assumption in the afternoon.

In this class we have learned:

- Laplace's definition of probability
- Rules for combining event and probabilities
- Independence simplifies calculations.
- **•** Conditional probabilities are also easy.
- **•** Bayes' Theorem to learn about reality from data.

