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A funny poem

Normally, probability starts with an urn of coloured balls.

We start with a poem:

Do you carrot all for me?
My heart beets for you,
With your turnip nose
And your radish face,
You are a peach.
If we cantaloupe,
Lettuce marry:
Weed make a swell pear.

consisting of 28 different words.

Task 1. Pick one random word from poem and write down.
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Have you magically chosen the same word?

Question:
How likely is it that at least two of you selected same word?

Choose from:
10%, 40%, 80%, 95%?
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What are the chances...

The 28 words in poem consist of:
9 food items: carrot, beets, turnip, radish, peach,
cantaloupe, lettuce, weed, pear.
3 body parts: heart, nose, face
4 verbs: do, are, marry, make
5 pronouns: you, me, my, your, we
7 others: all, for, with, and, a, if, swell

Task 2. What is the probability that you chose a food item?

P(chose food item) =
9

28
= 0.32
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Probability rules!



Random words Probability rules Conditional probabilities Bayes’ Theorem Conclusion

Definition of probability according to Marquis de Laplace (1779)

Pierre Simon Laplace

Probability of event is ratio of
number of cases favorable, to
number of all cases possible;

when nothing leads us to expect
that any one of these cases should
occur more than any other, which
renders them, for us, equally possible.

In mathematical terms:

P(E) =
Number of elements in E
Total number of elements

where E is an event.
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Sample space

Consider a process with an uncertain outcome:
amount of rain in Lugano tomorrow,
roll of a die,
Word chosen from funny poem.

Collection of all possible outcomes is the Sample Space.

Srain =

{x | x ≥ 0},

Sdie = {1,2,3,4,5,6}

Spoem = {do, you, carrot, all, . . ., swell, pear}
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Events

An event is a subset of the sample space.

E = word is a verb

is an event w.r.t. Spoem, since

E = {do, are, marry, make} ⊂ Spoem.

The set
F = word is funny

is not an event w.r.t. Spoem, because F ̸⊂ Spoem.
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Combining events

Consider selecting word from poem and following two events:

A = food item
B = contains letter “w”,

then we can combine the events as follows:

A ∩ B =

{weed}
A ∪ B = {carrot, . . ., pear, we, with, swell}

Ac = {heart, nose, . . ., if, swell}
Bc = Spoem − {weed, we, with, swell}

Ac ∪ Bc = Spoem − {weed}
(Ac ∪ Bc)c = {weed}

A general rule helpful in calculating probabilities:

(A ∩ B) = (Ac ∪ Bc)c
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Complement: “not”

Probability that event does not happen:

P(Ec) = 1 − P(E).

For example, let E = word is not food item, then

P(E) = 1 − P(Ec)

=

1 − P({word is food item})
= 1 − 9/28
= 19/28

Here, gains of “switching to complement” are not very high.

Complements are often good strategy when confronted with
“at most x” questions, where x is high,
“at least y ” questions, where y is low.
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Intersections: “and”

The interaction operator is typically described as “and”:
A ∩ B means “both A, and B”.

Example: Poem. Probability of selecting food item with a “w”?

A = {food item}
B = {contains a “w”}

P(A ∩ B) =

P(weed)

=
1
28



Random words Probability rules Conditional probabilities Bayes’ Theorem Conclusion

Intersections: “and”

The interaction operator is typically described as “and”:
A ∩ B means “both A, and B”.

Example: Poem. Probability of selecting food item with a “w”?

A = {food item}
B = {contains a “w”}

P(A ∩ B) = P(weed)

=

1
28



Random words Probability rules Conditional probabilities Bayes’ Theorem Conclusion

Intersections: “and”

The interaction operator is typically described as “and”:
A ∩ B means “both A, and B”.

Example: Poem. Probability of selecting food item with a “w”?

A = {food item}
B = {contains a “w”}

P(A ∩ B) = P(weed)

=
1
28



Random words Probability rules Conditional probabilities Bayes’ Theorem Conclusion

Unions: “or”

Union operator is non-exclusive “or”:
A ∪ B means “or A, or B, or both”.

This corresponds to area contained in both circles:
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Example of union: “or”

For example, consider again:

A = {food item}
B = {contains a “w”}

so

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

=

9/28 + 4/28 − 1/28
= 12/28
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Example: 2 words from poem

Consider words you and your neighbour selected from poem.

What is sample space?

Spoem2 =

{(carrot, carrot), . . . (carrot, pear),. . ., (pear, pear)}
= {28 × 28 word combinations}

Let’s consider the event

E = {both of you choose food items}

Note,
|E | = 9 × 9.

If you didn’t cheat, then

P(E) =
9 × 9

28 × 28
= .10
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Independence

There is something special about previous example:

Your word does not affect your neighbour’s word

So, events

A = {your word is food item}
B = {your neighbour’s word is food item}

are so-called independent events.

In case of independent events, we can use

P(A ∩ B) = P(A)P(B)

Example. 2 words from poem

P(A ∩ B) =

P(A)P(B)

=
9
28

× 9
28

= 0.10



Random words Probability rules Conditional probabilities Bayes’ Theorem Conclusion

Independence

There is something special about previous example:

Your word does not affect your neighbour’s word

So, events

A = {your word is food item}
B = {your neighbour’s word is food item}

are so-called independent events.

In case of independent events, we can use

P(A ∩ B) = P(A)P(B)

Example. 2 words from poem

P(A ∩ B) = P(A)P(B)

=

9
28

× 9
28

= 0.10



Random words Probability rules Conditional probabilities Bayes’ Theorem Conclusion

Independence

There is something special about previous example:

Your word does not affect your neighbour’s word

So, events

A = {your word is food item}
B = {your neighbour’s word is food item}

are so-called independent events.

In case of independent events, we can use

P(A ∩ B) = P(A)P(B)

Example. 2 words from poem

P(A ∩ B) = P(A)P(B)

=
9
28

× 9
28

= 0.10



Random words Probability rules Conditional probabilities Bayes’ Theorem Conclusion

Have you magically chosen the same word?

Question:
How likely is it that at least two of you selected same word?

Choose from:
10%, 40%, 80%, 95%?



Random words Probability rules Conditional probabilities Bayes’ Theorem Conclusion

Magic?

Let’s begin by defining relevant events:
E = at least two words match

Ec = no words match
Aij = words of person i and j do not match
Note that we can write Ec in terms of Aij :

Ec = ∩i,jAij .

Then, assuming independence among the Aij :

P(E) = 1 − P(E2)

= 1 − P(∩i,jAij)

= 1 −
∏
i,j

P(Aij)

= 1 −
(

1 − 1
28

)(13
2 )

= 0.94
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Conditional Probabilities
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Dependence

Independence is great, because
we can focus on smaller sample space
which makes calculations easier

However, often events are not independent.

Example: Poem. Probability of selecting food item with a “w”?

A = {food item}
B = {contains a “w”}

0.04 =
1

28
= P(A ∩ B) ̸= P(A)P(B) =

9
28

4
28

= 0.05

How can we do simple calculations with dependent events?
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Definition of conditional probability

Example. Draw 2 cards from deck without replacement.

E = 1st card is ace
F = 2nd card is ace

P(E ∩ F ) =

4
52

3
51

= P(E)P(F |E)

where P(F |E) is the probability of F given E .

Definition. Conditional probability of A if B happened:

P(A | B) =
P(A ∩ B)

P(B)
.
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Using conditional probabilities

Example: Poem. Probability of selecting food item with a “w”?

A = {food item}
B = {contains a “w”}

P(A ∩ B) =

P(A)P(B|A)

=
9
28

1
9

=
1
28
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Multiplication rule

Multiplication rule
For three events A,B,C (not necessarily independent),

P(A ∩ B ∩ C) = P(A)× P(B | A)× P(C | A ∩ B)

Example. Consider taking a 3 cards from a pack of cards.
What is the probability that they are all aces?

Ai = Ace in i th draw

So we want to know,

P(A1 ∩ A2 ∩ A3) =

P(A1)× P(A2 | A1)× P(A3 | A1 ∩ A2)

=
4
52

× 3
51

× 2
50

= 0.00018



Random words Probability rules Conditional probabilities Bayes’ Theorem Conclusion

Multiplication rule

Multiplication rule
For three events A,B,C (not necessarily independent),

P(A ∩ B ∩ C) = P(A)× P(B | A)× P(C | A ∩ B)

Example. Consider taking a 3 cards from a pack of cards.
What is the probability that they are all aces?

Ai = Ace in i th draw

So we want to know,

P(A1 ∩ A2 ∩ A3) = P(A1)× P(A2 | A1)× P(A3 | A1 ∩ A2)

=

4
52

× 3
51

× 2
50

= 0.00018



Random words Probability rules Conditional probabilities Bayes’ Theorem Conclusion

Multiplication rule

Multiplication rule
For three events A,B,C (not necessarily independent),

P(A ∩ B ∩ C) = P(A)× P(B | A)× P(C | A ∩ B)

Example. Consider taking a 3 cards from a pack of cards.
What is the probability that they are all aces?

Ai = Ace in i th draw

So we want to know,

P(A1 ∩ A2 ∩ A3) = P(A1)× P(A2 | A1)× P(A3 | A1 ∩ A2)

=
4
52

×

3
51

× 2
50

= 0.00018



Random words Probability rules Conditional probabilities Bayes’ Theorem Conclusion

Multiplication rule

Multiplication rule
For three events A,B,C (not necessarily independent),

P(A ∩ B ∩ C) = P(A)× P(B | A)× P(C | A ∩ B)

Example. Consider taking a 3 cards from a pack of cards.
What is the probability that they are all aces?

Ai = Ace in i th draw

So we want to know,

P(A1 ∩ A2 ∩ A3) = P(A1)× P(A2 | A1)× P(A3 | A1 ∩ A2)

=
4
52

× 3
51

×

2
50

= 0.00018



Random words Probability rules Conditional probabilities Bayes’ Theorem Conclusion

Multiplication rule

Multiplication rule
For three events A,B,C (not necessarily independent),

P(A ∩ B ∩ C) = P(A)× P(B | A)× P(C | A ∩ B)

Example. Consider taking a 3 cards from a pack of cards.
What is the probability that they are all aces?

Ai = Ace in i th draw

So we want to know,

P(A1 ∩ A2 ∩ A3) = P(A1)× P(A2 | A1)× P(A3 | A1 ∩ A2)

=
4
52

× 3
51

× 2
50

=

0.00018



Random words Probability rules Conditional probabilities Bayes’ Theorem Conclusion

Multiplication rule

Multiplication rule
For three events A,B,C (not necessarily independent),

P(A ∩ B ∩ C) = P(A)× P(B | A)× P(C | A ∩ B)

Example. Consider taking a 3 cards from a pack of cards.
What is the probability that they are all aces?

Ai = Ace in i th draw

So we want to know,

P(A1 ∩ A2 ∩ A3) = P(A1)× P(A2 | A1)× P(A3 | A1 ∩ A2)

=
4
52

× 3
51

× 2
50

= 0.00018



Random words Probability rules Conditional probabilities Bayes’ Theorem Conclusion

Bayes’ Theorem
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Who was Reverend Bayes?

Reverend Thomas Bayes
(c.1702 - 17 April 1761)

English mathematician and
Presbyterian minister
1743: Elected Fellow of Royal
Society.
1761: Thomas Bayes dies
1763: Essay Towards Solving a
Problem in the Doctrine of
Chances read before Royal
Society of London
20th century: famous for solving
problem of “inverse probability”
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Bayes’ Theorem

Assume we get data D from the true state S0 of reality:

D = {data}
S = {state of the world.}

Question. Given data D what is our belief in
S ∈ {S0,S1, . . . ,Sn}?

Note that typically P(D | Si) is easy.

Bayes’ Theorem

P(S | D) =
P(D | S)P(S)∑n

i=0 P(D |Si)P(Si)

Probabilities P(Si) need to be assumed known a priori.
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God’s not playing dice, but flipping coins...

Imagine that at beginning of time, God flips a fair coin:
If heads, then God creates two universes:
one with black-haired people, other with blond haired
people.
If tails, then God creates one black-haired universe.

Now suppose that you are living in black-haired universe.

Then what is probability of God’s coin having landed heads?
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God’s flipping coins...

E = {Living in a black-haired universe.}
F = {Heads}

Given data E what is our posterior belief in F?

P(F |E) =

P(FE)

P(E)

=
P(E |F )P(F )

P(E |F )P(F ) + P(E |F c)P(F c)

=
0.5 × 0.5

0.5 × 0.5 + 1 × 0.5
= 1/3
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Sentiment analysis

We get a piece of text (e.g. tweet) and we want to know:

Does it express a positive or negative sentiment?

Let’s consider following dictionary:

C = {of, great, kind, weird, stuff, mean}

Two two sentiments: S ∈ {positive, negative}
Conditional probabilities P(word | sentiment) are:

word positive negative
of 0.1 0.1

great 0.3 0.1
kind 0.3 0.1

weird 0.1 0.3
stuff 0.1 0.2

mean 0.1 0.2
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Tweet: “weird kind of stuff”

Is above tweet positive or negative?

Define our events:
Wi = i th word (i = 1,2,3,4)
N = negative sentiment

Bayes’ Theorem! Let prior probability P(N) = 0.5:

P(N | W1 ∩ . . . ∩ W4) = P(W1∩...∩W4 | N)P(N)

P(W1∩...∩W4 | N)P(N)+P(W1∩...∩W4 | Nc )P(Nc )

= 0.3×0.1×0.1×0.2×0.5
0.3×0.1×0.1×0.2×0.5+0.1×0.3×0.1×0.1×0.5

= 0.67

We have secretly made use of conditional independence!
We relax this assumption in the afternoon.
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Conclusion

In this class we have learned:
Laplace’s definition of probability
Rules for combining event and probabilities
Independence simplifies calculations.
Conditional probabilities are also easy.
Bayes’ Theorem to learn about reality from data.
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